# Predicting Reasonable Broadband Costs

On Behalf of the Nebraska Rural Independent Companies January 6, 2011

### Project Scope and Resources

- Goal: Produce a statistical means to predict the loop cost of a high-capacity terrestrial broadband network using public variables
- Data Set: Labor, material and engineering costs to build 227 rural areas and 209 town areas in 15 states served by 63 ILECs
- Team Members:
  - Vantage Point Solutions (VPS) of Mitchell, SD
  - Consortia Consulting of Lincoln, NE
  - Rolka, Loube, Saltzer Associates of Harrisburg, PA
  - Stone Environmental of Montpelier, VT

# **Data Compilation**

- 1. Associated each VPS engineering project with a geographic area. Used exchange boundaries, separated into "Town" and "Rural" areas.
- 2. Identified cost drivers obtainable through public sources:

| Size         | Plowing<br>Difficulty | Obstacles          | Work Interruptions |
|--------------|-----------------------|--------------------|--------------------|
| Area         | Soils Texture         | Road Intersections | Frozen Ground Days |
| Road Mileage | Bedrock %             | Stream Crossings   | Rain Frequency     |
| Households   | Wetlands %            |                    |                    |

3. Associated and conformed GIS data to the VPS project, e.g. created variables that "matched" the project data.

### **GIS Data Translation**

1. Selected GIS variables as proxies for VPS data:

| VPS Data             | GIS Data                           |  |
|----------------------|------------------------------------|--|
| Area of Project      | Calculated Area                    |  |
| Locations Served     | Households using "Centroid" Method |  |
| Mainline Route Miles | "Clipped" Road Miles               |  |

- 2. Adjusted GIS mileage data for
  - unpopulated areas and
  - certain types of roads (major divided highways, roads with special characteristics such as cul-de-sacs, access ramps, and traffic circles and thoroughfares including walkways and driveways.)
- 3. Tested the households variable for growth or decline in population since the 2000 census.

#### Data Validation

- Compared the VPS and GIS data to identify data points where a geographic error or mismatch seemed likely.
- Created quality control screens:

|                            | Expected<br>Value | Range of<br>Acceptance | Data<br>Points<br>Accepted |
|----------------------------|-------------------|------------------------|----------------------------|
| GIS Area/Project Area      | 1                 | .9 to 1.1              | 391                        |
| Census HH/VPS Locations    | .9                | .7 to 1.1              | 297                        |
| GIS Road Miles/Route Miles | 1                 | .8 to 1.2              | 258                        |

- Records failing any of these screens were <u>not</u> used in regression. Excluded one other outlier with inconsistent GIS and VPS data.
- 167 records were used (85 rural and 82 town areas.)

# Regression Study

- Updated engineering cost data to 2010 prices using the Consumer Price Index.
- 2. Determined that for VPS data, linear density (customers/route mile) was a better predictor than area density (customers/square mile).
  - Linear Density explained 87% of the variation in cost, whereas Area Density only explained 71%.
- 3. Verified that the R-squared did not degrade materially, 0.825 versus 0.87, when GIS data was substituted for the VPS.
  - Road miles instead of route miles.
  - Households instead of locations.
- 4. Evaluated using growth adjusted household data rather than raw census data from 2000. The R-squared didn't improve, thus used 2000 data.

## Cost/Location by Customer Density

#### Cost per Location / Area Density



# Cost/Location by Cable Route Mile

#### **Cost Per Location / Route Density**



**VPS Locations per VPS Mainline Route Miles** 

# Regression Results

- Cost/Household = A + [B/(Households/Adjusted Road Miles)] + [C\*Households] + [D\*Frost Index] + [E\*Wetlands %]
  - + [F\*Soils Texture] + [G\*Road Intersections Frequency]

|                                | Symbol | Coefficient | T-Statistic |
|--------------------------------|--------|-------------|-------------|
| Fixed Cost                     | Α      | \$3,072     |             |
| Linear Density                 | В      | \$13,365    | 18.96       |
| Households                     | С      | -\$0.8867   | -2.10       |
| Frost Index                    | D      | \$25.04     | 3.61        |
| Wetlands %                     | E      | \$17,700    | 1.38        |
| Soils Texture                  | F      | \$1,376     | 1.49        |
| Road Intersection<br>Frequency | G      | \$165.40    | 2.46        |

#### Conclusions

- Linear density is by far the most important predictor of construction cost, accounting for 82.5% of the variation in cost.
- The inclusion of other GIS variables improves the accuracy of the cost equation to 86.7%.
  - Weather interruptions, the number of obstacles and difficult soil types all add cost.
  - The number of households is negatively related to cost. Thus, larger projects cost less per customer and smaller projects cost more.
  - Inclusion of new variables or improvements in existing variables may increase the equation's accuracy, but probably not materially.

# Cost Comparisons in the Data Set

- Average of <u>Total</u> Project Cost/Route Mile was Higher for Town than Rural.
  - Rural: \$ 26,728 per mile
  - Town: \$192,931 per mile
  - Town projects require more conduit, more frequent road crossings, more coordination with other utilities, and more customer drops.
- Because of lower customer densities in rural areas, the average cost <u>per customer</u> were higher.
  - Rural: \$9,286 per customer
  - Town: \$4,438 per customer
  - Rural customers require more mainline cable than town customers.
- Costs were unevenly distributed.
  - A substantial portion of the cost is incurred to serve a small number of customers.
  - In this data set, the three most expensive jobs, representing 1.7% of the projects, required 12% of the total investment.
- Outside plant comprised 58.5% percent of the total investment in the data set.

# Possible Improvements

- Including other engineering firms' data, especially from mountainous and coastal areas, would
  - create the opportunity to test existing results or
  - improve the regression equation.
- 2. Enhancing the "Soils Texture" variable.
  - Source of data used in regression: Soils Difficulty Table from the FCC's 1999 Synthesis Model.
  - These soil tables do not seem to reflect actual costs in rocky and clay soil areas.
  - An enhanced variable might increase the importance of the "Soils Texture" variable and change the importance of other variables.

#### Potential Uses of the Results

- Develop a mathematically supported framework for predicting "reasonable" capital expenditures
  - A process will be necessary for situations not addressed by the equation
- Develop a method for measuring reasonable fiber-based broadband deployment
- Evaluate the national cost of deploying a high-capacity terrestrial broadband network